Monatshefte für Chemie 114, 1205–1211 (1983)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1983

Synthesis and Molecular Structure of Salicylaldehyde S-methyl-isothiosemicarbazone, $C_9H_{11}N_3OS$

Gy. Argay^a, A. Kálmán^{a,*}, B. Ribár^b, V. M. Leovac^b, and A. F. Petrović^b

^a Central Research Institute of Chemistry, Hungarian Academy of Sciences, H-1525 Budapest-114, Hungary

^b Faculty of Sciences, University of Novi Sad, YU-21000 Novi Sad, Yugoslavia

(Received 7 March 1983. Accepted 13 April 1983)

The crystal structure of salicylaldehyde S-methylisothiosemicarbazone together with the synthesis applied are reported: $C_9H_{11}N_3OS$, monoclinic, $P2_1/n$, a = 5.169(4), b = 16.853(10), c = 11.367(5)Å, $\beta = 92.48(1)^\circ$, V = 989.3(18)Å³, Z = 4, $d_x = 1.405$ g cm⁻³. The structure was solved by the heavy atom method and refined anisotropically to a residual R = 0.046. The molecule is practically co-planar. There is only one basic difference between the title compound H_2L and its deprotonated and complexed forms reported hitherto: the nearly 180° difference in rotation about the formal double bond C1—N2. The molecules form hydrogen bonded dimers around $\overline{1}$.

(Keywords: Crystal structure analysis; Salicylaldehyde S-methylisothiosemicarbazone)

Synthese und Molekülstruktur von Salizylaldehyd-S-methyl-isothiosemicarbazon, $C_9H_{11}N_3OS$

Salicylaldehyd-S-methylisothiosemicarbazon wurde dargestellt und die Kristallstruktur vermessen: $C_9H_{11}N_3OS$, monoklin, $P2_1/n$, a = 5,169(4), b = 16,853(10), c = 11,367(5)Å, $\beta = 92,48(1)^\circ$, V = 989,3(18)Å³, Z = 4, $d_x = 1,405 \text{ g cm}^{-3}$. Die Struktur wurde mit Hilfe der Patterson- und Fourier-Methode bestimmt und anisotropisch bis zu einem R-Wert von 0,046 verfeinert. Das Molekül ist praktisch eben, wobei ein grundlegender Unterschied zwischen der protonierten (H_2L) und der deprotonierten Form in den Komplexverbindungen besteht. Die Formen unterscheiden sich durch eine Drehung um ca. 180° um die C_1 — N_2 -Doppelbindung. Die Moleküle H_2L sind durch Wasserstoffbindungen um das Symmetriezentrum zu einem Dimeren verknüpft.

Introduction

Salicylaldehyde S-methylisothiosemicarbazone (H_2L) takes part in the coordination to different transition metals as a quasi planar tridentate NNO ligand with a deprotonated OH group in the following structures: (o-phenatroline) (salicylaldehyde S-methylthiosemi $carbazonato)copper(II)nitrate^{1}$, (salicylaldehyde S-methylthiosemicarbazonato) (pyridine)copper(II)nitrate², (salicylaldehyde S-methylthiosemicarbazonato)copper(II)chloride³, and tris(pyridine) (salicylaldehyde S-methylisothiosemicarbazonato)cobalt(II)-trichloro(pyridine)cobaltate(II)⁴. In these structures it is a monoanion (HL⁻) while in ammonium(salicylaldehyde S-methylthiosemicarbazonato)dioxovanadate(V)monohydrate⁵ it assumes a dianionic form (L^{2-}) by an additional deprotonation of the primary amine group. The latest structure analysis⁴ substantiated the imido form of the thiosemicarbazide fragment [...N-N(H)-C-(NH)-SCH₃] of the HL⁻ ligand which had been suggested by Divjaković and co-workers⁶. The proton migration from N1 to N2 established by difference Fourier synthesis, is accompanied by a delocalization of the C1-N1 double bond on the N1-C1-C2 moiety. Consequently, C1-N1 and C1-N2 distances are practically equal and intermediate between single and double bonds. In order to give further evidence of this observation an X-ray study of the neutral ligand (H_2L) has also been performed.

Experimental

Synthesis. 5.0 g of S-methylisothiosemicarbazide \cdot HI⁷ dissolved in 20 ml of water was mixed to 25 ml of salicylaldehyde diluted with 5 ml of ethanol. This reaction mixture was then neutralized by adding 4 g of Na₂CO₃ \cdot 10 H₂O solved in 15 ml of water dropwise under permanent stirring. Cooling of the neutralized mixture resulted in a yellowish crystalline precipitant which was filtered and rinsed intensively first with water and after the negative reaction for iodine with ethanol and ether, as well. The yield was 4.3 H₂L (95%). Crystals suitable for X-ray analysis were obtained by recrystallizing 0.5 g of H₂L from 25 ml of warmed methanol. M.p.: 440 K. The crystals are soluble in warm methanol, less soluble in ethanol but insoluble in water and ether.

CHN analysis. Calculated for $C_9H_{11}N_3OS$ (M = 209.24): C51.66, H 5.29, N 20.07. Found: C 51.38, H 5.34, N 20.15%.

X-ray analysis. A crystal with dimensions of $0.1 \times 0.15 \times 0.25$ mm was mounted on a Syntex PI four-circle diffractometer equipped with a graphite monochromator. Cell dimensions were obtained by least-squares from the setting angles of 15 carefully centered reflections whose approximate positions had previously been obtained from a random peak search. The monoclinic symmetry was checked from oscillation and Weissenberg photographs.

Intensities of all reflections within $\theta < 25^{\circ}$ were determined in the ω -2 θ scan mode using MoK_a ($\lambda = 0.7107 \text{ Å}$) radiation. After conventional data reduction

of 2395 unique observations 1719 with $F_0 > 3.0 \sigma$ (F_0) were taken as observed. No absorption correction was applied [μ (MoK_a) = 2.8 cm⁻¹].

The position of the S atom was located in a Patterson map. The subsequent structure factor and Fourier calculations started from R = 0.55 revealed the positions of all the non-hydrogen atoms. Full-matrix least squares refinement of positional and vibrational parameters reduced R to 0.076. At this stage the coordinates of H atoms were located in a difference electron density map. Further anisotropic refinement of non-hydrogen atoms—while the hydrogen atoms were treated isotropically—improved R to the final 0.046 ($R_w = 0.058$, $R_{tot} = 0.069$). Scattering factors were taken from International Tables for X-ray Crystallography⁸. The calculations have been carried out on a PDP-11/34 minicomputer in Budapest using the SDP-34 program system provided by Enraf-Nonius.

Results and Discussion

Fractional atomic coordinates and isotropic tensor components are listed in Table 1 for non-hydrogen atoms. The isotropic tensor components were calculated as one third part of the trace of the orthogonalized u_{ij} tensor. The parameters for H atoms are given in Table 2. Bond distances, angles and the relevant torsion angles are listed in Table 3.

As shown by the row of the antiperiplanar⁹ (~ 180°) torsion angles (Table 3) about the consecutive bonds: C1—N2, N2—N3, N3—C3, C3—C4, and C4—C5 of which four assume the same sign (—), the nearly planar H_2L molecule (Fig. 1) is slightly twisted about an axis

		v_{03n}		
y	z	B _{eq}		
8	3769(2)	227(1)	1618(1)	4.1(1)
õ	997(6)	-1393(2)	1147(2)	4.9(1)
N 1	5949(6)	675(2)	3701(3)	4.1(1)
N 2	2663(6)	-229(2)	3786(2)	3.7(1)
N 3	996 (6)	-695(2)	3094(2)	3.3(1)
C 1	4155(7)	212(2)	3153(3)	3.2(1)
C 2	6280(9)	890(3)	1192(4)	5.0(2)
C 3	-631(7)	-1108(2)	3674(3)	5.3(1)
C4	-2435(7)	-1663(2)	3103(3)	3.0(1)
C 5	-4105(7)	-2102(2)	3786(3)	3.5(1)
C 6	-5814(8)	-2644(2)	3297(3)	3.8(1)
С7	-5883(8)	-2756(2)	2096(3)	4.2(2)
C 8	-4260(8)	-2338(2)	1394(3)	4.2(2)
C 9	-2535(7)	-1793(2)	1882(3)	3.4 (1)

Table 1. Fractional atomic coordinates (\times 10⁴) and thermal parameters for nonhydrogen atoms. The e.s.d.'s are given in parentheses

Gy. Argay et al.:

	x	y	z	B_{eq}
H2A	610 (8)	149 (2)	163 (3)	4.8 (9)
H2B	786 (7)	72(2)	139 (3)	3.8(8)
H2C	602(9)	99 (3)	45(4)	6.9(12)
H3	-70(7)	-109(2)	456(3)	3.9 (8)
H_{5}	-413(7)	-202(2)	462(3)	4.5(9)
H 6	-689(7)	-294(2)	380 (3)	4.0(8)
H7	-702(7)	-312(2)	181 (3)	4.6(9)
H 8	-422(7)	-242(2)	58 (3)	4.5(9)
HO	-12(7)	-117(2)	148(3)	3.3(8)
H1A	616 (7)	64(2)	434 (3)	$\cdot 4.5(9)$
H1B	713 (9)	104(3)	324(4)	7.6(12)

Table 2. Fractional atomic coordinates $(\times 10^3)$ and temperature factors for hydrogen atoms. The e.s.d.'s are given in parentheses

Table	3.	Structural	data

Bond Length (Å)

S –C1	1.748(3)	N3—C3	1.284(5)	C6C7	1.377(5)
S - C2	1.795(5)	C3—C4	1.454(5)	C7C8	1.376(5)
C1N1	1.344(5)	C4-C5	1.398(5)	С8—С9	1.380(5)
C1N2	1.309(4)	C4C9	1.404(5)	С9—О	1.357(4)
N2	1.395(4)	С5—С6	1.372(5)		

Bond Angles (°)

C1—S —C2	103.0(3)	N3C3C4	122.3(5)	C6C7-C8	120.9(6)
S	120.1(5)	C3-C4-C5	119.5(5)	С7—С8—С9	120.5(6)
S —C1—N2	120.8(5)	C3-C4-C9	122.5(5)	C4-C9-C8	119.8(6)
N1	119.1(5)	С5—С4—С9	118.0(5)	C4C9O	122.2(5)
C1-N2-N3	112.4(5)	C4-C5-C6	122.0(6)	C8C9O	118.0(5)
N2	114.7(5)	С5—С6—С7	118.8(6)		

Relevant Torsion Angles (°)

N1-C1-N2-N3	-177.9(7)	C3-C4-C5-C6	-178.8(7)
C1-N2-N3-C3	-176.6(6)	C2—S —C1—N2	-178.7(4)
N2-N3-C3-C4	-176.3(7)	0 - C9 - C4 - C3	-1.8(6)
N3-C3-C4-C5	179.3(6)	C9-C4-C3-N3	0.8(6)

bisecting the terminal N1–C1 and C5–C6 bonds of the zigzaged molecular skeleton. This feature of the molecule is apparently permitted by the existing $p\pi$ - $p\pi$ interaction between the conjugated double bonds and the whole amidine (isothiosemicarbazide) moiety. The conspicuous differences between the conformation of the title

1208

compound H_2L and those of its ionized (once or twice deprotonated) chelating forms are the different (~ 180°) amounts of rotations about the C1—N2 and C1—S bonds. If C1—N2 can be regarded as a double bond then H_2L and its deprotonated forms are related as geometrical isomers, namely in H_2L N3 and S atoms are eclipsed relative to the C1—N2 bond (isomer Z) while in the chelating ligands they are in *anti*

Fig. 1. A perspective view of the molecule with atomic numbering

positions (isomer E). The latter is essential for the tridentate ligands to allow an optimal geometry for chelation (Fig. 2 a). However, in H_2L the isomer E involving automatically close intramolecular contact N1H...N3 would be disfavoured by the presence of the intramolecular OH...N3 hydrogen bond.

 O...N
 H...N
 $\not<$ OH...N

 OH...N3
 2.67 (1)
 2.06 (3) Å
 148 (3)°

This sterical hindrance may only be eliminated by an unlikely rotation of 180° about the strong N3—C3 double bond turning the OH group toward the other bi-coordinated N atom (Fig. 2 b) and forming thus an other conformation stabilized by an OH...N2 intramolecular hydrogen bond. The existing OH...N3 hydrogen bond also forces the S—C2 (methyl) bond from its favourable position (*synperiplanar*⁹ with the N1—N2 bond) into an *antiperiplanar* arrangement to allow chelation of the HL⁻ and L²⁻ ligands. However, this results in an eclipsed conformation of the terminal C1—N1 and S—C2 bonds which in turn prevents H12 from attaining to a hydrogen bond. Consequently, the

⁸¹ Monatshefte für Chemie, Vol. 114/11

primary amine group of the title compound $[N1(H)_2]$ can maintain only an intermolecular hydrogen bond via H11 with the only remaining acceptor atom (N2) of a symmetry related molecule. This can either be

Fig. 2. a The conformation of the deprotonated molecule in chelated form (isomer E); b an unlikely conformation of the title compound which permits an intramolecular N1H...N3 hydrogen bond; c dimer of the centre of symmetry related H₂L molecules bound by N1H...N2 intermolecular hydrogen bond pairs

formed as an infinite hydrogen bond helix around a twofold screw axis or about a centre of symmetry as in the case of the title compound (Fig. 2 c). The hydrogen bond parameters of the dimer associates formed in the lattice of the title compound are as follows

	$\mathbf{N} \dots \mathbf{N}$	$\mathbf{H} \dots \mathbf{N}$	$\mathrm{NH} \ldots \mathrm{N}$
$\mathrm{N1}-\mathrm{H11}\ldots\mathrm{N2}[ar{x},ar{y},ar{z},]$	3.01(1)	$2.30(3){ m \AA}$	$165(2)^\circ$

To summarize, the internal rotations shown by the molecules of the title compound H_2L and of its ionized forms ligated to transition metals are

governed directly by the optimal conditions of forming either intra- and intermolecular hydrogen bonds as in H_2L or chelates as in the metal complexes¹⁻⁵.

References

- ¹ Petrović D., Carić S., Leovac V. M., Canić V., Cryst. Struct. Comm. 8, 617 (1979).
- ² Petrović D., Leovac V. M., Lazar D., Cryst. Struct. Comm. 10, 823 (1981).
- ³ Biyuskin V. N., Gerasimov V. I., Belov N. V., Kristallografiya 26, 323 (1981).
- ⁴ Divjaković V., Leovac V. M., Ribár B., Argay Gy., Kálmán A., Acta Cryst. B38, 1738 (1982).
- ⁵ Petrović A. F., Ribár B., Petrović D. M., Leovac V. M., Gerbeleu N. V., J. Coord. Chem. **11**, 239 (1982).
- ⁶ Divjaković V., Ribár B., Leovac V. M., Gerbeleu N. V., Z. Kristallogr. 154, 83 (1981).
- ⁷ Freund M., Paradies T., Ber. dtsch. chem. Ges. 34, 3114 (1901).
- ⁸ International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press. 1974.
- ⁹ Klyne W., Prelog V., Experientia 16, 251 (1960).